

We are the makers – IoT Learning Scenario Prosthesis controlled by electromyographic sensor

This learning scenario is present in both O2 and O3.

What changes is the support material connected to it. In O2 there is a general support material containing general information, while in O3 there is a tutorial on how to develop this application in practice.

1. Title of the Scenario	<i>How to make a Prosthesis controlled by electromyographic sensor</i>
2. Target group	This scenario can be fit for secondary school and vocational people
3. Duration	This scenario can be divided in 4 two hour lessons
4. Learning needs	Drawing skills, experience with 3D modelling and printing, manual skills
5. Expected learning	Awareness of drawing 3D object socially useful
outcomes	Application of electronics to make a 3d printed prosthesis functional
	Lesson 1: Design of the prosthesis
	Lesson 2: Mechanical assembly and introduction to electromyography
6. Methodologies	Lesson 3: Programming of sensors and electronics
	Lesson 4: Testing the functionality of the electromyographic sensors
7. Place / Environment	Classroom
8. Tools / Materials /	Computer with software CAD, one of each three students
Resources	Kits to assembly prosthesis
	Documentation to assembly prosthesis
	Software to program sensors
	Hardware platform to program electronic boards
	EMG sensors

	Lesson 1: Design of the prosthesis
9. Step by step description of the activity / content	 In video conference or in person you will talk to the person who needs a prosthesis. We will decide together which model optimizes comfort and usability.
	2. A first 2D drawing is made, which will be implemented on a 3D drawing software.
	Lesson 2: Mechanical assembly and introduction to electromyography
	1. The prosthesis designed in the first lesson, properly modified by experts and printed, will be assembled.
	 It will explain what electromyography is, in what areas it is used and for what purpose.
	Lesson 3: Programming of sensors and electronics
	1. We understand how the sensor should be to detect the correct signal.
	 We program the board, which when the person contracts the muscle on which the sensor is placed, the electrical signal emitted and read by the EMG sensor will be used to set in motion the prosthesis.
	Lesson 4: Testing the functionality of the electromyographic sensors
	1. We test the entire designed system and we make the necessary changes in the programming to optimize it, so that the prosthesis is set in motion when the muscle is really contracted and stays in static position when the muscle is relaxed.
10. Feedback	Lesson 1: Quality of the 3D model
	Lesson 2: Efficiency of prosthesis and learn the use of electromyography
	Lesson 3: Knowledge of programming to control wearable sensors
	Lesson 4: What we have learn from these lessons
11. Assessment & Evaluation	Lesson 1: Each team managed to design a prosthesis?
	Lesson 2: Did they understand how to assemble the prosthesis and what is electromyography?
	Lesson 3: Did they manage to read a muscle signal and program the

microcontroller? Lesson 4: What did they learn from the final test?