

Number of project: 2017-1-DE03-KA201-035615

‘We are the makers - IoT’ Learning Scenario:

glass fiber communication using Adafruit CPX Express

Author: Thomas Jörg, Johannes-Kepler-Gymnasium Weil der Stadt

The following paper was developed and tested in a school-environment with ca. 16 students of

age 13-14 in the schoolyear 2019/2020. It reflects the experience with talented and inquiring

students which made their programming scripts by themselves after a network technology

teaching unit. This paper is supposed to be a recommendation as a starting point.

Figure 1: Prototype of a glass fibre communication setup of two microcontrollers

IoT means networking of computer-controlled

devices. Network communication often means that

the devices exchange their information wirelessly,

i.e. via radio. In fact, classic carrier media such as

the fiber optic connection are also included.

The didactic advantage of using fiber optics for the

introduction to communication technology is the

visibility of the exchange of information: you can

see the light pulses with which information bits are

exchanged. A simple physical principle, namely

total reflection, is sufficient to understand modern

fiber optic communication.

Number of project: 2017-1-DE03-KA201-035615

1. Title of

Scenarios
IoT Device Network Communication: Glass Fiber Programming

2. Target audience
▪ 14 - 16 years

3. Duration
▪ Minimum 7 weeks with 2-3 lessons per week

4. Learning items

discussed during

class

▪ Sensors and actuators in the exchange of information between digital

devices

▪ Principle of protocol- and packet-based network communication

▪ Application of total reflection for the transport of light pulses.

▪ Programming of python-based microcontrollers in small groups of two

students each

5. Expected

learning outcomes

▪ How does an IoT system work?

▪ How to structure and implement network communication?

▪ Why do you need a communication protocol?

▪ How does packet-based digital communication work?

6. Methods ▪ In this scenario students will construct, build, and program a serial

communication between two microcontroller-devices from scratch by

themselves. Students will also use the Serial Monitor and Serial plotter for

visualizing and plotting data.

7. Setting ▪ A class set of fiber optic cables to connect the microcontrollers

▪ A class set of Adafruit CPX microcontrollers,

▪ These CPX controllers are programmed with Circuit python

▪ Each student receives a laptop with a pre-installed Mu editor for their CPX

microcontroller

▪ Each CPX is built into a 3D-printed enclosure, which ensures the precise

alignment of the glass fibers.

▪ Each student writes a log of their project work

Number of project: 2017-1-DE03-KA201-035615

8. Tools, Materials and Resources

3D-Drucker

About 2-3 3D-printers are necessary since students will print their

CPX-housings. Of course, it’s possible for the students to

construct machine parts by themselves

3d printed components:

As a starting point, all necessary parts are provided in

.stl-format and as Autodesk Fusion 360 Files:

Figure 3: STL-File.Printing time for both parts about 1 hour

The two parts are dimensioned in such a way that a CPX with about 0.5mm game can be

insertedinto the lowerpart. The upper and lower parts are connected with M3 screws:

Recommended length of the screw is 25mm. The parts can be locked with wing nuts, so that the

microcontroller can be quickly removed and removed.

Figure 5: M3 Screw and wing nut

Figure 2: A model of a 3D-Printer

Figure 4: Preview of Fusion-file

Number of project: 2017-1-DE03-KA201-035615

The enclosure is designed to easily plug in the fiber optic

cables and position them optimally above the LEDs and the

brightness sensor.

A 1.5mm PMMA cable is used as fibre glass. You get these

fibers in rolls of about 100 meters in length for about 20 euros.

Each group of students who want to connect two CPXs requires

2 by 1 meter of cable. A cable as a transmitting line and a

cable as a receiving line. With such a role, several classes can

be supplied with fiber optics cheaply.

The 1.5mm diameter ensures that students can't get hurt so

easily. In addition, fibres of this thickness are robust against

bending or buckling.

The upper part of the 3D-printed enclosure has many holes, which are intended as a guide for

these cables. The pre-constructed bore has a diameter of 1.8mm.

If it should occur due to fast and poor quality pressure that

the cable cannot be pushed through the openings of the

enclosure, then can be reworked with a small hand drill.

These hand drills are hand-guided and therefore harmless;

they are usually delivered with a good basic equipment on

various drills.

To cut the glass fibers, you should not use pliers or scissors because they squeeze the fiberglass. A

smooth cut is required from which the light can step out. Therefore, it is recommended to use a

carpet knife.

Figure 7: Hand drill

Figure 8: Cutter

Figure 6: 100 meters of glass fibre

Number of project: 2017-1-DE03-KA201-035615

Figure 9: some features of the CPX

The Adafruit CPX

In this work we use the Python-based microcontroller "Circuit Python Express" of the company

"Adafruit Industries". This board is a convenient way to use a microcontroller together with many

prefabricated and built-in actuators and sensors in the classroom.

The CPX has proven to be robust and reliable in multiple teaching applications. In addition, Adafruit

also offers a lot of information about the microcontroller. In addition to numerous sample

programs, there is also good documentation.

green "ON" LED

10 x NeoPixel

Light-Sensor

Temperature-Sensor

Acceleration-Sensor

7 x Touch-Inputs
(A1, A2, A3, A4, A5, A6, A7)

A tutorial on how to introduce the programming of the CPX

together with many sample programs can be found here:

https://iludis.de/?page_id=291

https://iludis.de/?page_id=291

Number of project: 2017-1-DE03-KA201-035615

Necessary equipment

The computers that students work with should have the following software installed:

▪ Autodesk Fusion 360 (or any other 3D-modeling-Software, e.g. Wings3D)

▪ CURA slicing software,

▪ An internet connection for downloading libraries

▪ Mu Editor (https://codewith.mu/)

Figure 10: Screenshot Mu Editor

Figure 11: Photograph of students setup

https://codewith.mu/

Number of project: 2017-1-DE03-KA201-035615

9. Lesson plan: Step by step description of the activity/ content

Lesson 1 & 2 (90min): Introduction to IoT

Students will be introduced IoT by examples: Vacuum robots with app remotes, internet-based

weather stations, smart farming and last but not least health applications. Students should examine

how those devices work and which components are needed: a microcontroller based system

controls and coordinates attached sensors and actors. Furthermore it communicates and

coordinates with other systems of similar type often via wireless communication networks. Parts

needed: Sensors, Actors, Communication devices. Possibilities and threats need to be discussed

and also limitations: where does IoT make sense and where not?

Lesson 2 & 3 (90min): Introduction to the theory of communication protocols

The students of the class play a role-playing game: the class watches and develops ideas. The

following rules apply:

▪ Two students "transmitter" and "receiver" sit together on chairs, which stand back to back

so that both can not see each other between the two stands a third, empty chair.

▪ The transmitter is supposed to send the receiver two completely different words, which are

spoken backwards a completely different meaning, such as the pairs of words:

(4 letters: “LIVE”/EVIL” and “STAR”/ “RATS” | 3 letters: “GOD”/ “DOG” and “RAW/WAR”)

▪ Like spoken language, word transmission allows only one sequence of individual characters

in succession, so all letters must be transmitted individually. Therefore, the letters of the

two words are written on individual notes.

▪ These notes can only be transferred one by one from the sender to the receiver by placing

a note on the chair and the receiver picking up the note there – without the two parties

being able to see each other.

▪ The only direct communication allowed between the two parties is a single tone (e.g.

"beep") that everyone is allowed to give.

▪ If a communication goes wrong, the message transmission is interrupted, a new rule is

established, and students start again.

It makes sense for students to realise that communication must be made through jointly agreed

rules, namely a protocol:

Students must agree on a start signal. There must be a pause in time after each letter for the

characters to arrive in the correct order; this can be agreed by clocking or by "beeps".

Furthermore, the order in which the letters are exchanged must be agreed. Otherwise, the words

will have a different, unintended meaning. And finally, the communication must be stopped.

Number of project: 2017-1-DE03-KA201-035615

Lesson 4 & 5 & 6 (120min): Principles of serial communication

Principles of multiplexing and demultiplexing: Data bits are transmitted one by one, starting from

the MSB ('most significant bit') to the LSB ('least significant bit') in a specified order via a single

data cable.

A distinction is made between synchronous and asynchronous data transmission: In the simpler

synchronous case, the receiver – which functions as a master – specifies the common clock

frequency with which it triggers individual bit transmission at the transmitter (slave). After a pre-

agreed number of transmitted bits, the data transfer is finished.

In the asynchronous case, a cycle time must be agreed for both devices involved in the

communication beforehand, although these times may differ only truly little from each other.

Lesson 7 (45min):

History of data transmission: Émile Baudot

Using the 5-bit baudot code, the basics of data transmission are

developed using the practical example. If you only want to transfer

uppercase letters, you need 26 different letter characters and possibly

2-3 punctuation marks, such as the space or the question mark. To

encode these less than 32 different symbols with bits, you need 5 bits;

possible coding would be, for example,:

Symbol A B C D E F G H I J K

Bitcode 00001 00010 00011 00101 00110 00111 01000 01001 01010 01011 01100

Symbol L M N O P Q R S T U V

Bitcode 01101 01110 01111 10000 10001 10010 10011 10100 10101 10110 10111

Symbol W X Y Z LEER START STOP .

Bitcode 11000 11001 11010 11011 11100 11101 11110 11111 00000

Students should consider a system that can be used to encode letters bitwise–ideally they come up

with ideas similar to those in the table above.

Since bits are transmitted at a certain speed, it is called a so-called baud rate, which was named

after the French engineer Emile Baudot. Here you can go into the biography of Baudot.

Figure 12: Emile Baudot

Number of project: 2017-1-DE03-KA201-035615

Lesson 8 & 9 (90min): Repetition Total Reflection

Total reflection

We use the simulations „Light Refraction“: https://javalab.org/en/light_refraction_en/

And„Total Internal Reflection“: https://javalab.org/en/total_internal_reflection_en/

For the transition from water to air,

"The light beam is broken off the solder during the transition from the optically denser medium

(water) to the optically less dense medium (air)"

If the angle of incidence of the light beam in the water exceeds a so-called "critical angle", then

the refractive angle in the medium air would have to be greater than 90° – and that is impossible!

Therefore, the beam of light has no choice but to remain in the water.

1) critical angles when moving from different media to air

https://javalab.org/en/light_refraction_en/

Determine the critical angles – i.e. those angles of incursion at which the light beam does NOT

make it out of the medium:

Medium Critical angle, above is total reflection

Water 49°

Diamond

Sapphire

Glass

https://javalab.org/en/light_refraction_en/
https://javalab.org/en/total_internal_reflection_en/
https://javalab.org/en/light_refraction_en/

Number of project: 2017-1-DE03-KA201-035615

2) Interpret the following two images:

Interpret the selected areas in the two images in

their own words. How do these reflections come

about? And what exactly do you see in Area 3?

3) Applications of Total Reflection

https://javalab.org/en/total_internal_reflection_en/

On the left side is a laser that feeds its beam of light into a so-called glass fiber. Fiber optics are

used to transport information with light. On the one side of the fiber optic computer signals is

irradiated by means of laser beam and on the other hand by means of a light sensor the light

signals are received and passed on to the target computer. Explain the operating principle of the

glass fibre, answering the following questions:

1. Why does the light beam remain in the fiber?

2. Are there situations where the light beam leaks out of the fiber too early?

3. How does the light line within the fiber depend on the thickness of the fiber?

1

2

3

https://javalab.org/en/total_internal_reflection_en/

Number of project: 2017-1-DE03-KA201-035615

Lesson 10 & 11 (90min), Introduction to programming with Python:

the CPX is connected to the computer via USB cable and programmed with the programming

environment "mu-Editor". Here are some scripts to get used to the CPX. Quelle:

https://iludis.de/?page_id=291

Script 1, “Blink”, LED switch on and off:

import board

import digitalio

import time

meinPin = digitalio.DigitalInOut(board.D13)

meinPin.direction = digitalio.Direction.OUTPUT

while True:

meinPin.value = True

time.sleep(1)

meinPin.value = False

time.sleep(1)

Script 2, “beep”, play Tone:
import time

from adafruit_circuitplayground.express import cpx

for i in range (1, 5, 1):

 cpx.start_tone(262)

 time.sleep(0.2)

 cpx.stop_tone()

 time.sleep(0.2)

 print(i)

Script 3, “Touch”, Play sound when touch is pressed:

import board

import time

import touchio

from adafruit_circuitplayground.express import cpx

B_A1 = touchio.TouchIn(board.A1)

B_A2 = touchio.TouchIn(board.A2)

while True:

 if B_A1.value == True:

 cpx.start_tone(262)

 else:

 cpx.stop_tone()

 if B_A2.value == True:

 cpx.red_led = True

 else:

 cpx.red_led = False

 print(B_A1.value, B_A2.value)

 time.sleep(0.1)

Speakers

Figure 13: Location of the loudspeaker

https://iludis.de/?page_id=291

Number of project: 2017-1-DE03-KA201-035615

Script 4, Neopixel switching

import board, time, neopixel

NeopixelListe = neopixel.NeoPixel(board.NEOPIXEL,

10)

for i in range (10):

 NeopixelListe[i] = (0,64,0)

 print(NeopixelListe[i])

 time.sleep(0.1)

print(NeopixelListe)

Skript 5, light sensor reading

import board

import time

import analogio

licht = analogio.AnalogIn(board.LIGHT)

while True:

 print((licht.value,))

 time.sleep(0.1)

Light sensor

Figure 14: The numbering of the neopixels

Figure 15: Location of the light sensor

Number of project: 2017-1-DE03-KA201-035615

Lesson 12 & 13 (90 min): Example of synchronous communication

Figure 16: UML-Sequence diagram of synchronous communication

receiver source code sender source code

import board

import time

import neopixel

import analogio

light = analogio.AnalogIn(board.LIGHT)

Neo=neopixel.NeoPixel(board.NEOPIXEL,1

0)

pulseDuration = 0.05

while True:

 listenBits = [2, 2, 2, 2, 2, 2, 2,

2]

 Neo[4] = (0, 255, 0)

 for i in range(len(listenBits)):

 time.sleep(pulseDuration)

 if light.value < 40000:

 listenBits [i] = 0

 if light.value > 40000:

 listenBits [i] = 1

 Neo[4] = (0, 0, 0)

 print(listenBits)

 time.sleep(2)

import board

import time

import neopixel

import analogio

light = analogio.AnalogIn(board.LIGHT)

Neo=neopixel.NeoPixel(board.NEOPIXEL,1

0)

pulseDuration = 0.05

while True:

 sendBits = [1, 0, 0, 1, 1, 0, 1,

0]

 if light.value > 40000:

 for i in range(len(sendBits)):

 if sendBits[i] == 1:

 Neo[6] = (255, 0, 0)

 if sendBits[i] == 0:

 Neo[6] = (0, 0, 0)

 time.sleep(pulseDuration)

Number of project: 2017-1-DE03-KA201-035615

Lessons 14 & 15 (90 min): Example of asynchronous communication

Figure 17: UML-Sequence diagram of asynchronous communication

receiver source code sender source code

import board

import time

import neopixel

import analogio

light = analogio.AnalogIn(board.LIGHT)

Neo=neopixel.NeoPixel(board.NEOPIXEL,

10)

pulseDuration = 0.02

while True:

 listenBits = [2, 2, 2, 2, 2, 2, 2,

2]

 for i in range(len(listenBits)):

 Neo[4] = (0, 255, 0)

 time.sleep(pulseDuration)

 if light.value < 40000:

 listenBits[i] = 0

 if light.value > 40000:

 listenBits[i] = 1

 time.sleep(pulseDuration)

 Neo[4] = (0, 0, 0)

 time.sleep(pulseDuration)

 print(listenBits)

 time.sleep(0.5)

import board

import neopixel

import analogio

light = analogio.AnalogIn(board.LIGHT)

Neo=neopixel.NeoPixel(board.NEOPIXEL,

10)

sendBits = [1, 0, 0, 1, 1, 0, 1, 0]

i = 0

transmit = True

while True:

 print(i)

 if light.value > 40000 and transmit:

 if sendBits[i] == 1:

 Neo[6] = (255, 0, 0)

 if sendBits[i] == 0:

 Neo[6] = (0, 0, 0)

 transmit = False

 if light.value < 40000 and not

transmit:

 i = i+1

 i = I % 8

 transmit = True

Number of project: 2017-1-DE03-KA201-035615

10.

Feedback

At the end of the module, students should have developed a deeper understanding

of how serial communication works and what computer principles are necessary for

implementing this technology. During the lessons, important aspects of electronics,

optics and protocol construction are discussed.

11.

Assessment

& Evaluation

Students keep their labor journal, which can be reviewed by the teacher. Students

can also present the results of their experiments. In addition, a standard in-class-

test must be conducted at the end of the lessons.

