

Number of project: 2017-1-DE03-KA201-035615

‘We are the makers - IoT’ Learning Scenario:

smart farming with an IoT-plantrobot

Author: Thomas Jörg, Johannes-Kepler-Gymnasium Weil der Stadt

The following paper was developed and tested in a school-environment with ca. 18 students of

age 13-17 in the schoolyear 2018/2019. It reflects the experience with many meanders and some

failures. Since the IoT-field is complex, teaching materials must be chosen carefully. This paper is

supposed to be a recommendation, as a starting point.

Figure 1: Prototype of a IoT plantgrowing robot

Number of project: 2017-1-DE03-KA201-035615

1. Title of

Scenario
Learn how to grow plants with the help of an IoT-plantrobot

2. Target

group
14 - 17 years

3. Duration
At minimum 5 weeks of 2*45min-lessons per week: in sum about 6-8 hours.

4. Learning

needs

covered

through the

exercise

▪ Interaction between electronic parts and creatures (here: plants)

▪ Monitoring and affecting biological parameters

▪ Communication chain of IoT-devices

▪ Principles of sensors and actors

▪ Different principles humidity measuring in soil.

▪ Principles of LED-lighting for growing plants

▪ Fine adjustment of machine parameters for optimizing plant growing

▪ Principles of wireless communication networks

▪ Construction and 3D-printing of a robotic environment

5. Expected

learning

outcomes

▪ How does an IoT-system work?

▪ Where are possibilities and limitations of IoT-systems?

▪ Which components – hard and software – are key to build an IoT-device?

▪ How to build the rules for biomonitoring and influencing living creatures?

6. Methodo-

logies

In this scenario students will construct, build and program a fully interactive plant

growing device from scratch by themselves. Students will also build an app for remote

controlling the IoT-plantrobot

7. Place/

Environment

▪ a laboratory with a set of electronic parts and components;

▪ each group of students need to have a computer or laptop with administrative

privileges for installing different software packages

▪ A projector for teaching tutorials and presenting students works;

▪ each student has to keep a laboratory journal

Number of project: 2017-1-DE03-KA201-035615

8. Tools/

Materials/

Resources

3D-Printers

About 3-4 3D-printers are necessary since

students will print their IoT-plantrobots by

themselves.

3d printed components:

As a starting point, all necessary parts are provided in

.stl-format and as Autodesk Fusion 360 Files.

Figure 4: complete set of 3D-data on a 20cm x 20cm 3D-printer

Figure 3: Overview of CAD-Data

Figure 2:Symbol of 3D-Printer

Number of project: 2017-1-DE03-KA201-035615

Electronic components:

In this work, we recommend the seeed grove system since it’s ease of use:

(http://wiki.seeedstudio.com/Grove_System/) All core components except XBees,

Humidity sensors and LED-lighting are belonging to the grove standard:

Seeed Studio Components:

1: Grove Base Shield for Arduino-Uno

2. Grove OLED 128x64

3. Grove Bee socket

4. Grove - I2C Motor Driver (TB6612FNG)

5. Grove Temperatur Sensor v1.2

Regular sensors and actors:

1: Arduino Uno (or equivalent)

A: XBee Series 2C or Series 2

B: Adafruit Neopixel-ring with 16 RGBW (NOT RGB!) at 4500 K (warm-white)

C: SHT20-Temperature and Humidity-Sensor in waterproof housing or

D: Capacitive analog Soil Moisture Sensor

E: Peristaltic pump with 6V DC motor

1

2

3

4

5

B

C

A
Q

E D B

Number of project: 2017-1-DE03-KA201-035615

Miscellaneous parts:

▪ 5-6 mm silicone tubing (for aquarium purpose)

▪ Adapter for connecting silicone tubes with peristaltic pump

▪ M3 screws and butterfly nuts

▪ M3 Nylon Standoffs (Hex spacer)

▪ M2 Nylon Standoffs (Hex spacer) for Grove (has 2mm holes)

▪ Grove wires

▪ WAGO lever nuts

▪ Jumper wires

▪ Nursery pots with 8cm diameter

▪ USB power supply with 2-2.5A maximum current

▪ XBee USB adapter (e.g. https://www.waveshare.com/xbee-usb-adapter.htm)

Plants:

Suitable for doing experiments at school are fast growing plants

which are called “Microgreens” / “Microgreen Sprouts”; they are

nontoxic and eatable:

▪ Garden cress

▪ Mung Beans

▪ Red stem radish

▪ Red clover sprouts

▪ Broccoli sprouts

▪ Valerianella locusta (“Vit” field salad)

computers with the following software preinstalled:

▪ Autodesk Fusion 360 (or any other 3D-modeling-Software, e.g. Wings3D)

▪ CURA slicing software,

▪ An internet connection for downloading libraries

▪ Arduino IDE

▪ Processing IDE

▪ XCTU Software for configuring XBees

Figure 5: Nylon Standoffs

Figure 6: Garden cress

Number of project: 2017-1-DE03-KA201-035615

Arduino libraries for components:

Some components like the SHT20 humidity sensor or the motor driver need libraries for Arduino IDE to

work properly. How to import a library is described here: https://www.arduino.cc/en/Guide/Libraries

SHT20 lib (DF Robot): https://codeload.github.com/DFRobot/DFRobot_SHT20/zip/master

OLED lib (Seeed): https://github.com/Seeed-Studio/OLED_Display_128X64/archive/master.zip

Motor driver (Seeed): https://github.com/Seeed-Studio/Grove_Motor_Driver_TB6612FNG

Neopixel (Adafruit): https://github.com/adafruit/Adafruit_NeoPixel/archive/master.zip

Special code snippets for temperature sensor can be found here:

 http://wiki.seeedstudio.com/Grove-Temperature_Sensor_V1.2/

Connections:

https://www.arduino.cc/en/Guide/Libraries
https://codeload.github.com/DFRobot/DFRobot_SHT20/zip/master
https://github.com/Seeed-Studio/OLED_Display_128X64/archive/master.zip
https://github.com/Seeed-Studio/Grove_Motor_Driver_TB6612FNG
https://github.com/adafruit/Adafruit_NeoPixel/archive/master.zip
http://wiki.seeedstudio.com/Grove-Temperature_Sensor_V1.2/

Number of project: 2017-1-DE03-KA201-035615

8b Some theory of LED growlights and soil moisture measuring

LED growlighting

Foundation of using LEDs for plantgrowing is the theory of

PAR, “photosynthetically active radiation”: Plants are using

light photons for chemical reactions to build sugar from

carbon dioxide; these chemical reactions occur using

chlorophyll pigments inside the chloroplasts of each plant

cell.

Chlorophyll, when irradiated with sunlight, absorbs red and

blue light. The green color parts are not absorbed directly

for the photosynthetic process directly. Therefore plants are

green.

LED light for plantgrowing purposes must mainly provide blue and red light from the chlorophyll

absorption spectrum. That is why

we use the “R” and the “B” parts of neopixel RGBW-high power

LEDs. The green part of the LED is not used.

But a plant also uses other parts of the continuous sunlight

spectrum, the photosynthetic process is more complex and is

a field of current research. In short: green light dives deeper

into a plant and makes the photosynthetic process more efficient,

since it affects the absorbance rate of chlorophyll. Therefore small

amounts of continuous green- to yellow spectrum is necessary.

https://academic.oup.com/pcp/article/50/4/684/1908367

In addition, plant growing is affected by plant hormons, which also react to sunlight and mostly need a

continuous sunlight spectrum. As an example, phytochromes react to infrared lighting.

https://en.wikipedia.org/wiki/Plant_hormone

https://en.wikipedia.org/wiki/Phytochrome

As a consequence, an optimal growlight must not be limited to red and blue parts of the spectrum but

also needs a ‘white’ LED part which produces a warm-white continuous sprectrum to affect secondary

photosynthetic systems and plant hormons. Therefore we use the 4500K-RGBW LED from Adafruit

Industries.

Figure 7: The absorption spectrum of both the

chlorophyll a and the chlorophyll b pigments.

https://en.wikipedia.org/wiki/Chlorophyll_b

Figure 8: Adafruit neopixel, RGBW-LED,

https://www.adafruit.com/product/2758

https://academic.oup.com/pcp/article/50/4/684/1908367
https://en.wikipedia.org/wiki/Plant_hormone
https://en.wikipedia.org/wiki/Phytochrome

Number of project: 2017-1-DE03-KA201-035615

Soil moisture sensing

Usually moisture is measured as percentage of air humidity. Therefore a temperature and humidity

sensor is necessary. Humidity itself can be measured in different ways and one of the most common

methods is capacitive measurement. The sensor itself is a capacitor whose capacity is altered with the

absorption / desorption of water.

The capacity C of a capacitor depends on the plate-area A, the distance

between the plates d and the dielectric medium between two metal plates

with a given permittivity constant R:

𝐶 = 𝜀𝑅
𝐴

𝑑

While distance and size of the plates cannot be altered with humidity, the

permittivity constant does. Usually the permittivity of a given compound

is compared with the permittivity of the perfect vacuum and therefore it’s

called the ‘relative permittivity’. Here are some important values for the relative permittivity:

Medium Rel.permittivity

Vacuum 1

Air 1.0006

Water 80

Dry soil mineral 5

As a consequence, the capacitance of soil is

increasing the more water it contains. Watery,

wet soil has a significantly higher permittivity

than it’s dry counterpart. Usually it is measured

as so called “volumetric soil water content”,

SWC. It is defined as volumetric water content:

𝑆𝑊𝐶 =
𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑜𝑖𝑙

An electronic circuit for measuring these changes in capacitance is build as an RC-circuit. Depending on

its capacitance a RC-circuit has a characteristic time-constant which can be measured by a

microcontroller. The lager the capacitance the longer the time constant. In Summary, humidity is

measured this way:

𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦
𝑙𝑒𝑎𝑑𝑠 𝑡𝑜
→ 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑎𝑛𝑐𝑒

𝑙𝑒𝑎𝑑𝑠 𝑡𝑜
→ 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

Figure 9: scheme of a capacitor.

https://en.wikipedia.org/wiki/Ca

pacitor

Figure 10: Porretta, Bianchi "Profiles of relative permittivity and

electrical conductivity from unsaturated soil water content

models", ANNALS OF GEOPHYSICS, 59, 3, 2016, G0320

Number of project: 2017-1-DE03-KA201-035615

Comparison SHT20 with housing and Soil moisture sensor:

SHT 20 Soil moisture sensor

Measures Air humidity inside it’s waterproof

housing and simultaneously the temperature

Measures directly the relative permittivity of soil.

An additional temperature measurement is

necessary.

Communicates via I2C with the Arduino

microcontroller

Produces an analog signal which must be

digitalized with the ADC of the Arduino

microcontroller

Must not be put completely inside the soil since

airflow is necessary

Has to be kept as deep as possible inside the soil

Costs about 20 Euro Costs about 5 Euro

ATTENTION: Since this sensor is producing

relative air humidity as an output, the

measurement values doesn’t make any sense for

the soil conditions. Most of the time the sensor

produces values above 100% since the air inside

the waterproof housing is saturated with soil

humidity. You need to use the raw 16 bit values

which are not converted to the unmeaningful air

humidity values.

ATTENTION: Since this sensor is measuring the

relative permittivity of the soil, it is absolutely

essential, that the sensor is in perfect touch to the

soil with no air layer between both surfaces.

Furthermore the sensorvalues are drifting, since

with watering the volume of the soil changes and

therefore the covering surface of the sensor also

does. In addition, growing plants are also

changing the permittivity values.

Number of project: 2017-1-DE03-KA201-035615

8c Arduino source code as an example

#include <Adafruit_NeoPixel.h>

#include "Grove_Motor_Driver_TB6612FNG.h"

#include "DFRobot_SHT20.h"

#include <Wire.h>

#include <SoftwareSerial.h>

MotorDriver Energie;

DFRobot_SHT20 sht20;

Adafruit_NeoPixel GrowLED(16,6,NEO_RGBW);

SoftwareSerial Serial_89(8, 9);

unsigned long aktMillis = millis();

unsigned long readMillis = aktMillis;

unsigned long ledMillis = aktMillis;

unsigned long serialMillis = aktMillis;

unsigned long pumpMillis = aktMillis;

unsigned long Feuchtigkeit = 0;

unsigned long FeuchtSoll = 55300;

float Temperatur = 0;

int Giessdauer = 0;

int Helligkeit = 0;

void setup() {

 Wire.begin();

 Serial.begin(9600);

 Serial_89.begin(9600);

 Energie.init();

 GrowLED.begin();

 LEDsetzen();

 sht20.initSHT20();

 delay(100);

 sht20.checkSHT20();

 Energie.dcMotorRun(MOTOR_CHA, 255);

 Energie.dcMotorBrake(MOTOR_CHB);

}

void loop() {

 aktMillis = millis();

 if (aktMillis - serialMillis >= 1000) {

 while (Serial_89.available() > 0) {

unsigned long test = Serial_89.parseInt();

 if (test > 0 && test < 1000) {

 wasserpumpen(10);

 serialMillis = aktMillis;}

 if (test > 1000) {

 FeuchtSoll = test;}

 }

 }

 if (aktMillis - ledMillis >= 60000) {

 LEDsetzen();

 ledMillis = aktMillis;

 }

 if (aktMillis - readMillis >= 5000) {

 Feuchtigkeit = sht20.readHumidityRaw();

 Temperatur = sht20.readTemperature();

 Serial_89komm();

 readMillis = aktMillis;

 }

 if (aktMillis - pumpMillis >= 300000) {

 if (Feuchtigkeit < FeuchtSoll) {

 wasserpumpen(5);

 pumpMillis = aktMillis;

 }

 }

}

void wasserpumpen(int Sekunden) {

 Giessdauer = Giessdauer + Sekunden;

 Serial_89komm();

 Energie.init();

 delay(10);

 Energie.dcMotorBrake(MOTOR_CHA);

 delay(10);

 Energie.dcMotorRun(MOTOR_CHB, -255);

 delay(100);

 Energie.dcMotorRun(MOTOR_CHB, 255);

 delay(Sekunden * 1000);

 Energie.dcMotorBrake(MOTOR_CHB);

 delay(10);

 Energie.dcMotorRun(MOTOR_CHA, 255);

 delay(10);

 LEDsetzen();

}

void LEDsetzen() {

unsigned long Minuten=(aktMillis%8640)/6;

 int r = 0;

 int g = 0;

 int b = 0;

 int w = 0;

 if (Minuten < 840) {

 if (Minuten < 64) {

 r = Minuten * 4;

 g = 0;

 b = Minuten * 2;

 w = Minuten * 4;

 }

 if (Minuten >= 64 && Minuten <= 776) {

 r = 255 - (Minuten - 64) / 6;

 g = 0;

 b = 128 + (Minuten - 64) / 6;

 w = 255;

 }

 if (Minuten > 776) {

 r = 128 - (Minuten - 776) * 2;

 g = 0;

 b = 255 - (Minuten - 776) * 4;

 w = 255 - (Minuten - 776) * 4;

 }

 }

 Helligkeit = (int)(r + b + w) / 3;

 for (int i = 0; i < 16; i++) {

 GrowLED.setPixelColor(i,

GrowLED.Color(g, r, b, w));

 }

 GrowLED.show();

}

void Serial_89komm() {

 Serial_89.print("Zeit: ");

 Serial_89.print(aktMillis / 1000);

 Serial_89.print(", fIst: ");

 Serial_89.print(Feuchtigkeit);

 Serial_89.print(", Soll: ");

 Serial_89.print(FeuchtSoll);

 Serial_89.print(", Temp: ");

 Serial_89.print(Temperatur);

 Serial_89.print(", Wass: ");

 Serial_89.print(GesamtGiessdauer);

 Serial_89.print(", Hell: ");

 Serial_89.println(Helligkeit);

}

Number of project: 2017-1-DE03-KA201-035615

8d: Processing App with sourcecode

A typical IoT device typically has an App
interface which allows the user to monitor and
remote control his connected device.

One (relatively) easiy way to achieve this with
students is to use processing with it’s
capabilities to read serial data from the XBee
and draws it’s values to a graphical user
interface.

In addition, the Arduino IDE and the
Processing IDE are tightly related to each
other since the Arduino IDE is a ‘Fork’ of
processing.

For the button “GIESSEN” and the circular
knob “SOLL” (which means optimal value for
soil humidity”) the “ControlP5”-library is used
which can be easily installed from within the
Processing IDE.

For controlP5 refer to: https://code.google.com/archive/p/controlp5/downloads

8c. Processing source code as an example

import controlP5.*;

import processing.serial.*;

Serial arduinoKommunikation;

String payload;

String[] liste;

ControlP5 cp5;

Knob sollFeuchte;

int sollFeuchteWert = 500;

int arduinoSollWert = 0;

void setup(){

 size(400, 400);

 background(102);

 smooth();

 String portName = Serial.list()[0];

 arduinoKommunikation = new Serial(this, portName, 9600);

 cp5 = new ControlP5(this);

 PFont font = createFont("arial", 18);

 textFont(font);

 cp5.setFont(font);

 sollFeuchte =cp5.addKnob("Soll")

 .setRange(300, 700)

 .setValue(sollFeuchteWert)

 .setPosition(240, 85)

 .setRadius(70)

 .setDragDirection(Knob.VERTICAL)

 .setNumberOfTickMarks(40)

 .setTickMarkLength(4)

 .snapToTickMarks(true)

 .onRelease(new CallbackListener() {

 public void controlEvent(CallbackEvent theEvent) {

 sollFeuchteWert= int(theEvent.getController().getValue());

Figure 11: Screenshot App interface

https://code.google.com/archive/p/controlp5/downloads

Number of project: 2017-1-DE03-KA201-035615

 }});

 cp5.addButton("giessen")

 .setValue(0)

 .setPosition(20, 320)

 .setSize(200, 40)

 ;

}

void draw(){

 if (arduinoKommunikation.available() > 0) {

 payload = arduinoKommunikation.readStringUntil('\n');

 if (payload != null) {

 background(102);

 text("Pflanzenparameter", 35, 50);

 line(20, 60, 220, 60);

 liste = split(payload, ",");

 for (int i = 0; i<liste.length; i++) {

 liste[i] = trim(liste[i]);

 String[] Groesse = split(liste[i].trim(), ":");

 text(Groesse[0], 40, 90+40*i);

 int val= parseInt(Groesse[1].trim());

 if (i==2) {

 arduinoSollWert = val;

 }

 text(int(val), 140, 90+40*i);

 line(20, 100+40*i, 220, 100+40*i);

 }

 if (arduinoSollWert != sollFeuchteWert) {

 arduinoKommunikation.write(str(sollFeuchteWert));

 }

 }

 }

}

public void giessen() {

 if (millis()>5000) {

 arduinoKommunikation.write(str(2));

 }

}

Number of project: 2017-1-DE03-KA201-035615

9.

Lesson plan

Step by step

description of

the activity/

content

Lesson 1 & 2 (90min):

Students will be introduced IoT by examples: Vacuum robots with app remotes,

internet based weather stations, activity trackers with app communication and last

but not least smart agricultural farms. Students should examine how those devices

work and which components are needed: a microcontroller based system controls

and coordinates attached sensors and actors. Furthermore it communicates and

coordinates with other systems of similar type often via wireless communication

networks. Parts needed: Sensors, Actors, Communication devices.

Possibilities and threats need to be discussed and also limitations: where does IoT

make sense and where does it not?

Lesson 3&4 (90 min)

Students should plan the components for monitoring and optimizing plant growing.

Afterwards they can start to build such a machine from scratch by using the

provided parts. When finished, basic programming techniques can be taught for

enabling students to do their own experiments.

Lessons 5&6 (90 min)

Theory of soil moisture measurement and plant

lighting have to be taught. Students can make

measurements of SWC with their individual

sensors to make calibration curves. Students

should compare their experimental results to

realize that every student group has it’s own

measurement values which differ significantly.

Lessons 7&8 (90 min):

Students should start programming and controlling the peristaltic pumps with the

motor driver. Theory of H-Bridges have to be taught, and in addition the basics of

I2C-communication between

electronic device components should

be explained. Students should

measure I2C communication with

Oscilloscopes. The concept of PWM

(Pulse width modulation) has to be

introduced. Students can furthermore

measure the communication between

the Arduino and the Neopixel LEDs via

Oscilloscope.

Figure 13: PWM measurement with oscilloscope

Figure 12: experimenting with soil

sensors

Number of project: 2017-1-DE03-KA201-035615

 Lessons 9&10 (90 min):

Building a communication network: XBee modules and serial communication (UART). Students

should use XCTU Software as a starting point for their communication experiments in wireless

networks.

ATTENTION: XBees should be preconfigured in pairs by the teacher, since otherwise much time

will be lost by learning how to handle the many different configurations. Basically, XBee-Pairs are

defined using three different user-based values which are framed here in red:

Figure 14: Screenshot XCTU User Interface

1: PAN ID has to be the same for both XBees. Use hexadecimal letters, e.g. so called “Hexspeak”:

“BEEF”, “CAFE”, “F00D”, “AFFE”, etc..

2. The Serial Number High has to be copied from one XBee ….

3. … to the second one.

4. One XBee has to be configured as ‘Coordinator’ and the other as ‘Router’. Attention: In some

texts you can read that the second one should be configured as ‘Endpoint’. That can probably

produce some issues, since endpoint-XBees go to sleep for energy saving reasons.

1

2

3

4

4

Number of project: 2017-1-DE03-KA201-035615

After that, XBees can be put onto the UART communication port of the arduino.

Lessons 11 to finish (270 min):

Freestyle programming! And happy harvesting 😊

10.

Feedback

At the end of the lesson, students should have a well-grounded knowledge of how

IoT principles work and how machines connected to the internet are

communicating. They have experienced by themselves chances and limitations of

current technology. During the lesson, important aspects of electronics, informatics

and construction basics have been tutorised. Furthermore, biological aspects of

plant growing have been teached.

11.

Assessment

& Evaluation

Students keep their labor journal, which can be reviewed by the teacher. Students

can also present the results of their experiments. In addition, a standard in-class-

test has to be conducted at the end of the lessons.

