

We are the makers – IoT: Learning Scenario – From diamond to nanotubes. Allotropic forms of Carbon (by Romanian team)

1.	Title of the Scenario	From diamond to nanotubes. Allotropic forms of Carbon
2.	Target group	Secondary school students between 13-17 years old
3.	Duration	This scenario can be divided in 2 different sessions each lasting 3 teaching hours (one teaching hour = 50 minutes).
4.	Learning needs	Position of the Carbon element in the Mendeleev Periodical System, structure of carbon atom, valence, 3D designing
5.	Expected learning outcomes	 Understanding of "allotropic form" concept Understanding the structure of allotropic forms of Carbon: diamond, graphite, fullerene and carbon nanotubes Learning of physical and chemical properties of allotropic forms of Carbon Understanding the relation between structure and properties Learning about possible applications of allotropic forms of Carbon Understanding the principles of 3D printing, how it works Developing 3D designs representing the structures of: diamond, graphite, fullerene and nanotubes Safely 3D printing
6.	Methodologi es	Lesson 1: Presentation of Carbon allotropes: diamond and graphite Discussions Learning by doing, 3D designing and printing Lesson 2: Presentation of Carbon allotropes: fullerene and nanotubes Discussions Learning by doing, 3D designing and printing
7.	Place / Environment	Science laboratory
8.	Tools / Materials / Resources	Projector, Audio system, Copies of the students' sheets Power Point presentations: (1) Nanoparticles, (2) Carbon allotropes: diamond and graphite, (3) Carbon allotropes: fullerene and nanotubes 2 students' sheets

	Lesson 1: Nanoparticles presentation, Carbon allotropes: diamond and
	graphite presentation (given).
	i. Nanoparticle presentation – to capture students' attention
	ii. The teacher has to explain the concept of allotropy, allotrope
	forms of the carbon, structure of diamond and graphite, properties
	iii. Discussions about structure and properties of allotropic forms
	(diamond and graphite)
	iv. 3D designing of at least two graphite sheets
	v. 3D designing of a diamond unit formed by 4 tetrahedrons
	vi. 3D printing of unit structure for diamond and 3D graphite model
	designed before
	vii. Discussions about differences between printed structures and
9 Sten by sten	identification of properties differences
description	viii. Identification of possible applications of diamond and graphite
of the	ix. Evaluation based on a student sheet (given)
activity /	
content	Lesson 2: Carbon allotropes: fullerene and nanotubes presentation
content	(given).
	i. The teacher have to explain the concept of allotropy, allotrope
	forms of the carbon, structure of fullerene and nanotubes,
	properties
	ii. Discussions about structure and properties of allotropic forms
	(fullerene and nanotubes)
	iii. 3D designing and printing of graphene structure
	IV. Discussions about differences between printed structures and
	Identification of differences of properties
	V. Identification of possible applications of diamond and graphite
	VI. Evaluation based on a student sneet (given)
	VII. Conclusions
	Lesson 1: During discussion sessions teacher will find out based on students'
	feedback, if they understood the concept of allotropy, structure of diamond
	and graphite, relation between structure and properties, and if they can give
	additional examples about possible applications of both allotropic forms.
10. Feedback	
	Lesson 2: During discussion sessions teacher will find out, based on students'
	feedback, if they understood the structure of fullerene and nanotubes.
	relation between structure and properties, and if they can give additional
	examples about possible applications of both allotropic forms.
	Lesson 1: The student sheet comprises exercises in order to obtain a
	feedback and identify if the students understood the concept of allotropy and
11 Accordent	the structure, properties and applications of diamond and graphite
	Lesson 2: The student sheet comprises exercises in order to obtain a
	feedback and identify if the students understood the structure, properties and
	applications of fullerene and nanotubes

Obs. Depending on student's 3d modelling skills the teacher may ask the students to build the graphite sheets, diamond unit structure and a graphene sheet from scratch or he/she may give them the hexagon.stl, tetrahedron.stl and nanotube_hexagon.stl files to start with.

Co-funded by the Erasmus+ Programme of the European Union

